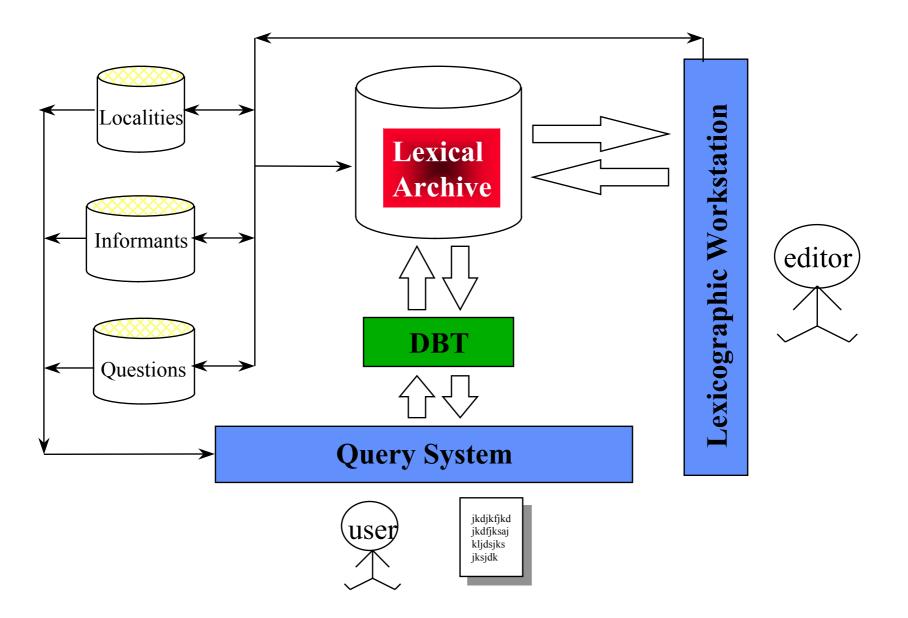
DBT-ALT: a System for Storying and Querying the Data of the **Atlante Lessicale Toscano (ALT)**

> Eugenio Picchi Simonetta Montemagni Lisa Biagini

Istituto di Linguistica Computazionale - CNR Pisa (Italy)

Atlante Lessicale Toscano

- ALT is a specially designed linguistic atlas in which lexical data have both a diatopic and diastratic characterisation
- ALT Data Bank contains the results of interviews carried out in 224 localities of Tuscany, with 2082 informants on the basis of a questionnaire of 745 items
- We expected at least
 2.082 * 745 = 1.551.090 individual responses equivalent to
 224 * 745 = 166.880 areal responses
- We collected more than 350.000 areal responses which were integrated with additional material emerged during the interviews (about 30.000 dialectal items)


DBT

- DBT is a textual database system for the storage, management and interrogation of large text archives whose basic functions include:
 - a query system
 - generation of indices (ordered either alphabetically or by frequency)
 - generation of concordances
- DBT is the core component of the PI-System (Picchi), a set of procedures specifically designed to tackle specific problems in the area of computational linguistics and lexicography. Among them, of specific interest for ALT,
 - processing of non-Latin alphabets
 - management of structured data

DBT-ALT

- DBT-ALT is a specialised version of DBT tailored to meet the combined needs of geolinguistic and sociolinguistic research as emerging from ALT
- DBT-ALT is designed to handle structured linguistic data either phonetically trascribed or represented according to standard Italian orthography
- DBT-ALT handles an integrated system of subsidiary archives containing information about
 - localities which have been investigated
 - informants who have been interviewed
 - the questionnaire
- DBT-ALT supports the automatic production of dialectal maps

DBT-ALT: overall architecture

ALT Entry Model (1)

- An entry model was needed sophisticated enough
 To represent the richness of collected linguistic information
 to enable complex information retrieval
- ALT entries present themselves as **bundles of attribute-value** pairs each of which specifies a different kind of information
- For each entry, the main coordinates LOCALITY, INFORMANT(s) and QUESTION are always specified
- ALT Lexical Archive contains different entry types:
 - canonical responses to questionnaire items
 - lexical items which emerged during the interview but which are not directly related with the questionnaire
 - typical contexts of use (e.g. phraseology, proverbs)
- All entries may also contain informants'/fieldworkers' remarks on the status of words (e.g. usage, traditionality, register)

ALT Entry Model (2)

{Punto}026
{TpInc}O
 {Dom}094
{Inf.A}1
{Forma} <sékkatójo>
{CGram}SO

{Punto}026

{TpInc}O

{ Dom} 094

 $\{Inf.P\}1$

{Forma} <metáto>

(CGram) SO

(CUso) RE

(CVar) NT

{ Comm} L' inf.1 sostiene che il termine è usato al di fuori di Treppio, ma che coincide anche con la cosiddetta 'pronuncia moderna'.

{Punto}062
{TpInc}0
{Dom}001b
{TpNot} F
{Inf.A}1
{Testo} <la fálče la fá le púnte in vétta e i
kkórpo in fóndo, la jáće>

Encoding phonetically transcribed data (1)

- The phonetic alphabet used in the project fieldwork is a geographically specialised version of the Carta dei Dialetti Italiani (CDI) transcription system
- In order to ensure a proper treatment of phonetically transcribed data, a complex encoding schema was designed to fulfil the specific requirements of different tasks:
 - editing
 - sorting
 - retrieval
 - on-screen display
 - printing

Encoding phonetically transcribed data (2)

- This encoding schema includes both compositional and atomic representations which, depending on the task, are automatically converted into each other
- Compositional representations:
 - encode each phonetic symbol with a basic sign which may be further specified through one or more diacritics
 - are particularly suitable for editing since all different phonetic symbols can be encoded by means of a restricted number of codes (36 basic signs and 9 diacritics)
 - permit to generalise over phonetic variants during both sorting and retrieval phases

• Atomic representations:

 show a 1:1 correspondence between ALT phonetic symbols and computer codes; used for on-screen display and printing

DBT-ALT Query System: main functionalities (1)

- The DBT-ALT query system provides dynamic search procedures which permit the user to interactively define his/her access key to the corpus of dialectal data and thus navigate through it on the basis of his/her research interests
- Lexical data can be accessed and retrieved on the basis of a wide range of parameters:

 \square questionnaire item to which they directly or indirectly relate \square semantic keywords clustering questionnaire items into

thematically coherent groupings

 \square locality in which they were witnessed

 \square phonetic realisation

 \square meaning components as inferable from the definition text

Retrieving phonetically transcribed data

- Computers should facilitate access to data but narrowness of phonetic transcription may constitute a major difficulty
- Compositional representations permit the user to overcome this difficulty by abstracting away from specific phonetic realisations
- Two different abstraction levels have been devised for retrieval purposes:
 - level 1 operates on basic signs only and ignores diacritic signs (e.g. /t/ and /t/)
 - level 2 clusters together different basic signs or combinations of them (e.g. /ki/, /ti/, /c/, /j/ and /t'/)

DBT-ALT Query System: main functionalities (1)

- The DBT-ALT query system provides dynamic search procedures which permit the user to interactively define his/her access key to the corpus of dialectal data and thus navigate through it on the basis of his/her research interests
- Lexical data can be accessed and retrieved on the basis of a wide range of parameters:

questionnaire item to which they directly or indirectly relate
 semantic keywords clustering questionnaire items into

thematically coherent groupings

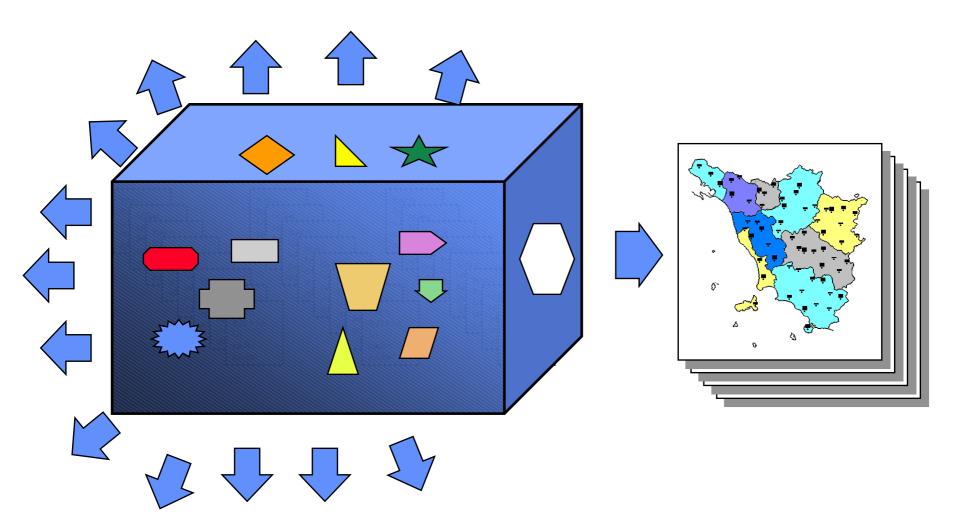
≥ locality in which they were witnessed

▶ phonetic realisation

 \square meaning components as inferable from the definition text

DBT-ALT Query System: main functionalities (2)

- These parameters can be variously combined to form complex queries looking for:
 - cooccurrence of different information types within the same record
 - occurrence of one out of a set of variants
- Query results can be filtered with respect to:
 - socio-economic and/or cultural background of informant(s)
 - geographic subareas either administratively or socioeconomically defined
 - relevance with respect to a given semantic domain
 - socio-linguistic status of words


Computer-generated dialectal maps

- DBT-ALT also supports the automatic production of dialectal maps starting from the results of each query
- All localities where a positive answer to the query was found are marked in the map
- Symbolisation conveys information about the frequency of occurrence of the response(s) within the informants' group
- Multi-layered maps will be possible – combining the results of different queries
 - projecting the results of a query onto different backgrounds
- In this way, dialectal maps become a useful and flexible research intrument

- DBT-ALT is a fast, flexible and powerful tool for storing and querying both geolinguistic and sociolinguistic data
- It supports complex queries, taking into account a wide range of parameters, which are interactively defined by the user on the basis of his/her research interests
- Query results can be projected onto computergenerated maps
- "Intelligent" access procedures are provided as far as phonetic variants are concerned

DBT-ALT and multidimensional dialectal data

